
Automatic Hexahedral Sweep Mesh Generation of Open Volumes

Nilanjan Mukherjee
*1

, Bhanu Peddi
2
, Jean Cabello

3
 & Michael Hancock

4

Meshing & Abstraction Group

Digital Simulation Solutions

Siemens PLM Software

SIEMENS
2000 Eastman Dr., Milford, Ohio 45150 USA
1
{mukherjee.nilanjan@siemens.com}

2
{bhanu.peddi@siemens.com}

3
{jean.cabello@siemens.com}

4
{hancock.michael@siemens.com}

* Author to whom all correspondence should be addressed

Abstract: Open volumes with partial surface geometry are often encountered in the

industry while modifying or morphing legacy meshes or while creating meshes in struc-

tural recesses or void regions. The paper describes an algorithm for auto-generating hex-

ahedral meshes on these open volumes without the need for laborious CAD repairs.

Based on the available input, the open volumes are first topologically categorized into

five classes. From the free edges and vertices of the open volume, a new, temporary,

mesher-native and lightweight void-topology is first created. The void-topological net-

work is supplemented by an underlying void-geometry which is also an abstract, light-

weight, mesher-native discrete dataset. With the help of these void vertices and edges the

open or void-volume is topologically and geometrically sealed. The source mesh is first

morphed on the target if the latter is present. Transfinite meshing is done on the wall fac-

es. A 2½D sweep meshing approach is used to complete the hex mesh. Thus, during the

mesh generation process, facetted geometry is automatically created that can be handed

over to the CAD engine.

Keywords: open volume, hexahedral meshing, sweep, void topology, void geometry,

transfinite.

1 Introduction

Multiple industrial finite element analysis models experience “Open Volumes”. Some

of these could be voids or structural recesses that are packed with non-structural material.

Typical examples include void spaces between the content and its container filled with

bubble material in drop-box analyses; epoxy or resin filled zones around fibrous material

in micromechanical analyses, explosive filled spaces between missile parts, bone marrow

spaces in bone cavity or interstitial fluid zones in bioengineering analyses etc. Remeshing

legacy meshes and constructing new geometry from or around it has been a commonly

used FE modeling procedure since the late 1990s. Such remeshing can encounter void

spaces between two solid or shell meshes with partial geometry resulting in open vol-

umes. Some typical examples are displayed in Figure 1. Traditional approach for gener-

ating solid meshes in such void regions is to use CAD engines to create NURBS faces

mailto:mukherjee.nilanjan@siemens.com
mailto:bhanu.peddi@siemens.com
mailto:jean.cabello@siemens.com
mailto:hancock.michael@siemens.com

and stitch them in to make a watertight CAD solid body. Needless to say it is an ineffi-

cient and costly solution.

a. b. c.

Figure 1. Some typical “open volume”s exemplified by a) arteries (cross-section),

b) a bone (for bone marrow analysis) and c) bubble packed space between container

and content (for drop-box analysis)

In this paper we attempt to solve the problem on the mesh generation side. The mesh-

ing engine developed at Siemens already creates an abstract lightweight representation of

the input CAD or discrete geometry for the purpose of mesh generation. To this mesher-

native abstract geometry network, we add new topology and geometry entities called

“void-topology” and “void-geometry” respectively. Source face vertices and edges are

first paired with those of the target face via topological comparison. Next, a free-edge and

free-vertex detection system is set up to generate void topological edges and faces called

v-TopoEdge and v-TopoFace respectively. Each v-TopoEdge and v-TopoFace can have

underlying v-GeomEdge and v-GeomFace respectively. The geometry creation methods

are discussed in details.

Once the void topology and void-geometry entities are added to the existing virtual ge-

ometry network, volume closure strategies can be used to seal the v-TopoFaces and make

a watertight v-TopoVolume that can be hex-meshed. Depending on the available input

data, the Open Volume is organized into 5 classes. Class specific closure strategies are

used to create a watertight void-volume.

A traditional 2½D sweep meshing approach is used to complete the hex mesh from

quadrilateral meshes initially generated on the volume-skin. Thus, in the process of hexa-

hedral mesh generation for the open volume, we also create facetted geometry that can be

handed over to the CAD engine to enable it to create a watertight CAD solid.

1.1 Related Work

There are many sweeping algorithms that can mesh various prismatic solids (2½D). The

advances in these algorithms enabled the creation of hexahedral meshes with unique and

distinct geometries that include non-planar, non-parallel and multiple source and target

faces [1, 2]. Most of these algorithms use a 2-D structured or unstructured quadrilateral

mesh as source mesh and then create a target mesh by mapping the source mesh [1,3].

Mapping is a popular tool for hex mesh generation, which is implemented to produce fi-

nal structured hexahedral mesh [4]. Constraints on these hexahedral meshes determine

the quality and visual appearance of these meshes. Therefore, a criterion is defined to

Automatic Hexahedral Sweep Mesh Generation of Open Volumes

produce a hexahedral swept mesh for a given geometry [5]. No work in open literature

that deals with hexahedral meshing on incomplete or open CAD volumes could be found.

2. Open Volumes and their taxonomy

 The “Open Volume” is defined by the complete absence of a CAD body and is

made up of an incomplete set of connected faces. These faces could either be NURBS

faces or tessellated or facetted faces, or abstract geometry (ABSCAD) faces that are a

lighter weight, locally healed and sometimes globally modified version of CAD geome-

try, often generated on legacy fem data. Since the hex mesh to be generated will use a

2½D sweep mesh generation algorithm, the user needs to specify a source face and a tar-

get face (if exists) and wall faces (if exist). According to the available data, the open vol-

umes first need to be classified as shown in Table I. This classification will enable us to

identify closure strategies for each case that need to be developed within the mesher to

produce a sweep-meshable v-Volume (i.e. void-Volume).

Table I: Taxonomy of Open Volumes

PROBLEM

CLASS

Source

Face

Target

Face

Wall

Faces

Examples

CLASS I


(single/

multiple

loop)


None

Figure 2. Class I problem

CLASS II




 (single/

multiple

loop)

Face must

have wall-

free vertex





Face must

have wall-

free vertex





 (some)

Figure 3. Class II problem

showing wall-free vertices

CLASS III


 (single/

multiple

loop)





 (some)

Figure 4. Class III problem

CLASS IV

(single/

multiple

loop)


 (all)

Figure 5. Class IV problem

(multiloop) depicting the

missing target face

CLASS V

(single/multiple

loop)

--- ---

 (all)

single/

multiple

loop

Figure 6. Class V problem

CLASS II and III are differentiated by the fact that the former must have “wall-free”

vertices. A “wall-free” vertex is defined as a vertex on the source or target face that is not

connected to a wall face.

3. Source-Target Topology Matching

In an open volume the source face is not completely connected to the target face.

Therefore an edge and vertex correspondence cannot readily be established for all topo-

logical entities. The missing relationships need to be discovered. Such discovery is al-

ways limited and thus need to be bound by speculated domain of geometric validity. Al-

gorithm I describes the matching technique -

ALGORITHM I : Source-Target Face Topological Match-Up

1. Query edge loops of the source and the target faces.

Automatic Hexahedral Sweep Mesh Generation of Open Volumes

2. The source and the target faces need to be topologically similar (same number of

loops and edges) but not necessarily be geometric twins. If the number of source

face loops nSL≠ nTL, the number of target face loops, algorithm does not continue to

the next step.

3. Both source vertices and target vertices location on each loop are identified.

4. Loop Matching is set based on distance between vertices. Thus,

i. Each source vertex distance to target vertices are measured and where this dis-

tance is minimized for a source vertex, the respective target vertex is identified as

a match.

ii. All the target vertices are cycled to identify if a match of source vertex was iden-

tified, and in the case where, any of the target vertices have not been matched or

have been matched more than once with source vertices, this is marked as a non-

unique map.

5. In the case of a non-unique map, the distances to source vertices from each target

vertex are measured and where this distance is minimized for target vertex, the re-

spective source vertex is identified as a match.

6. Loops are now matched based on the vertices and their respective loop directions are

then identified. If direction of loops is mismatched, a flip direction flag is turned on

for the match.

7. A validation check is performed based on the mean distances.

i. First mean and standard deviation of matched loops are calculated.

ii. Identify if at least 50% of these matches fall under 2 standard deviations.

iii. If the validation fails, then outliers are identified and are used to identify bet-

ter matches.

The problem, at hand, being ill-defined, obviously the proposed algorithm has its limita-

tions. If auto-matching fails, the user is prompted to manually match the source and tar-

get face loops.

4. v-Topology Creation

The traditional recourse to the problem described above is to take the geometry to a

CAD product and manually create and stitch-in CAD faces so as to make a closed solid

body. However, in the present meshing approach this tedious and manual step is com-

pletely eliminated. In order to achieve a closed sweep-meshable body, the void spaces

need to be first identified and closed in a meaningful manner. This is done by creating a

new kind of abstract, light-weight, temporary void-topology. The creation methods reside

within the mesher. We will, from here on, refer to void-topology as “v-Topology” and

void-geometry as “v-Geometry”.

The void-volume, to be called v-TopoVolume from here on, is mostly constructed with

v-Topology. Each v-Topological entity will have underlying v-Geometry that are simpli-

cal geometric representations. The surface mesh generated during sweep meshing could

probably be used as the best representation of the “constructed” geometry. For an open

volume portrayed in Fig. 7a, the topology tree and its geometric affiliates are described in

Fig.8. The TopoFace/TopoEdge(s) define the topology of the given faces, while the “v-

Topo” entities refer to the void faces and edges constructed to seal the open volume and

convert it to a topologically closed v-TopoVolume as shown in Fig. 7b.

Figure 7a. A typical open volume with a source, a target face and one wall face

Figure 7b. The open volume with closed with void topology – one void-edge and 2

void-faces are added to the void-volume

v-TopoVolume

TopoFace TopoFace TopoFace v-TopoFace v-TopoFace

(F1,src-face) (F2,tgt-face) (F3,wall-face) (vF1,wall-face) (vF2,wall-face)

TopoEdge TopoEdge TopoEdge

E1,E2,E3 E4,E5,E6 E2,E7,E5,E8 TopoEdge v-TopoEdge TopoEdge v-TopoEdge

 E3,E7,E5 vE1 E1,E8,E4 vE1

Figure 8. v-Topology tree for the open volume described in Fig.7a

v-TopoEdges are always constructed between wall-free vertices.

 E1

 E4

E2

E3

E5

E7

 E8
E5

 F1

(src)

F2

(trg)

F3

vE1

 E1

 E4

E2

E3

E5

E7

 E8
E5

 F1

(src)

F2

(trg)

F3

vF1

vF2

Automatic Hexahedral Sweep Mesh Generation of Open Volumes

It is important to remember again that each v-TopoEdge/v-TopoFace may have underlying v-

GeomEdge/v-GeomFace which are short-lived, lightweight, discrete geometry that may some-

times be used during mesh generation.

The algorithms for v-TopoEdge and v-TopoFace construction are described below in se-

quence–

ALGORITHM II: Construction of v-TopoEdges

1. After topological match-up of the source and target faces, their geometric vertices are

thus paired.

2. Once the pairing happens, cycle the source vertices

{

 4a. If the i-th source vertex is a wall-free vertex

 {

 4aa. Get the i-th target vertex

 4ab. Check if it is a wall-free vertex

 If not, continue cycling

 4ac. If yes, create a v-TopoEdge between these vertices

 4ad. Create a v-GeomEdge which is a straight line between the two vertices.

 4ae. Link the v-Topo & v-GeomEdge and flag it as a wall-edge.

 }

 }

Once the v-TopoEdges & their v-GeomEdges are constructed, they are stored in a work-

space with the other Topo and Geom entities. The v-TopoVolume, which is still open at

this point, is reevaluated and a free-edge list (Fel) is created. Algorithm III is used at this

point to create the v-TopoFaces.

ALGORITHM III : Construction of v-TopoFaces

1. While Fel is not empty

{

2. Start a new free-edge list - Feln

3. Look for a free-edge on the source, add it to Feln

4. While Feln does not form a closed loop

 {

5. Use edge-connectivity to walk the neighbor free-edges.

 All v-TopoEdges are free edges and figure in Fel initially. They need to be

 checked at this step to see if they are still free, i.e., they are not hooked up to

 v-TopoFaces yet.

6. Select a neighbor free edge. Add it to Feln . Go to step 5.

 }

7. Feln forms a closed loop. Use these free TopoEdges and v-TopoEdges to construct

 a v-TopoFace. At this point the face is a pure topological face with no geometry.

 Geometry data can be created later for the v-TopoFace if desired. (Ideally, some

 geometry is always created whether it is needed by meshing or not. This is to

 ensure that the volume generated is always both topologically and geometrically

 closed.)

8. The TopoEdges in Feln are removed from Fel.

9. The v-TopoEdges in Feln are re-evaluated and if not free anymore they are re

 moved from Fel.

10. Feln is emptied. Go back to step 2.

 }

5. v-Geometry Creation

 Once the v-Topology entities are established their underlying v-Geometry need to

be created. All v-TopoEdges need v-Geometry because all edges are seeded during mesh-

ing. Since these edges connect two vertices in void space, there is no intermediate path-

data to predict their shape. Thus all v-TopoEdges are assumed to be linear. v-TopoFaces,

however, may not necessarily need any geometry for mesh generation, especially when

the v-TopoFace is a wall face. All wall faces need 2D transfinite meshes in order to pro-

duce a swept hexahedral solid mesh. A 2D transfinite mesh can be generated in 3D space

using traditional TFIs. However, to seal the v-Volume both topologically and geometri-

cally we generate v-Geometry on all faces irrespective of the needs of the mesher. Three

different methods of geometry creation are used. Furthermore, the v-Geometry created in

the process of mesh generation can be handed back to the CAD engine for geometry crea-

tion.

 5.1 2D Meshing on a Newell Domain

Each v-TopoFace has a facetted boundary data that presents itself as loops of facet

edges. Each facet edge is linear and is defined by 2 3D points. Thus the v-TopoFace can

be represented as a 3D point-loop. The following algorithm is used to fill the v-

TopoFace

a. b. c.

Figure 9. A 3D v-TopoFace (a) and its corresponding 2D Newell Domain (b) which is

meshed and transformed back in 3D to yield the facetted face (c).

ALGORITHM IV: v-TopoFace geometry creation using meshing on a Newell Do-

main

1. The 3D polygonal loops (shown in Figure 9a) represented by facet points of the edg-

es that make the boundary of the v-TopoFace are transformed to a 2D plane or a

Newell domain [6] which is any 2D plane where the projected 3D area is maximized

following a least-square approach.

2. A transformation relationship is established between the 3D and 2D domains ex-

pressed by the vector normal to this 2D plane.

Automatic Hexahedral Sweep Mesh Generation of Open Volumes

3. Inner/Outer loops are identified based on their 2D locations. The 2D domain is used

to generate a triangular mesh between them using any 2D meshing algorithm.

4. All interior nodes and elements are transformed to 3D space using the transformation

relationship; new facet points are generated at node locations etc. This 3D mesh rep-

resents the facetted v-TopoFace.

This freshly constructed v-TopoFace can now be flattened and meshed using procedures

explained by Beatty & Mukherjee [7]. A limitation of this method of v-TopoFace crea-

tion is the limitation of the Newell domain. If the original 3D loops are too curved, the

loops can overlap and self-intersect in 2D. In such a scenario we revert to the method de-

scribed in 5.3.

 5.2 v-TopoFace defined by 2-loops

For class I problems, source and target face exist but are disconnected (i.e. no wall fac-

es exist between the two) and a surface dependency has been established either automati-

cally or manually, there are some special cases that need special treatment.

One such case is when we have only one free vertex that exists on both source and tar-

get (i.e. a loop that consist of one closed edge). In such case, the wall face has only one

wall edge defined by the straight line between the source and target vertex. The virtual

wall face is not map meshable because we cannot define four logical sides. Another case

as described in Figure 10, requires special treatment is two concentric cylinders, one be-

ing the source face and the other one the target face with the missing wall faces repre-

sented by the top and bottom annular discs. Again, the wall faces (annular discs) are not

map meshable as no four logical sides exist.

Figure 10. A Class I v-TopoVolume with annular wall v-TopoFaces

These special cases can be handled in many different ways. In our approach, we direct-

ly created a structured mesh in 3D. Algorithm V describes the approach for geometry

creation for the annular wall face.

ALGORITHM V: Geometry creation for annular wall v-TopoFace

1. We have a v-TopoFace that consists of two loops. One loop is the source loop

made up of source edges and the other one is the target loop made up of the cor-

responding target edges. We assume that the number of layer between the source

and target is user input.

2. The surface dependency data is also input and consists of a map between the

source pair (edge, direction) and the target pair (edge, direction). For each source

Annular

void

wall faces

edge and its direction in the source loop, the corresponding target edge and its di-

rection in the target loop is defined. Boundary nodes are created on the source

edges and their corresponding boundary nodes on the target edges are stored in a

map during the boundary node generation.

3. Once the node map between source nodes and target nodes is established, internal

nodes along the node line starting at the source node and ending at its corre-

sponding target node are created using a linear interpolation. The node line gets

subdivided into nL layer segments.

4. Moving counter clock wise along the edges of the source loop, rows of quad ele-

ments are created by connecting newly created internal nodes along the node line

to previous ones. Finally a structured mesh is generated and stored as the mesh

on the virtual wall face.

5. The method described previously applies to not just annular wall faces but to any

two loops between a source and a target face that have no wall faces. It is the on-

ly recourse when the loop has only one edge. However, when the loop has more

n edges [n>1]. One can decide to use this method or create n v-TopoFaces using

Algorithm VI.

5.3 v-TopoFaces with high boundary curvature

If a wall v-TopoFace boundary has a large wrapping angle the Newell domain becomes unre-

liable. Instead, 3D TFI is used to create the final quad mesh on the face before its v-Geometry is

determined. Then, the transfinite mesh is used to generate its v-Geometry following the algo-

rithm described below (Fig.11a-11d) –

Figure 11a. Boundary facet point distribution for a curved v-TopoFace

Figure 11b. 3D Transfinite mesh on the v-TopoFace showing boundary and interior nodes.

t

t

Automatic Hexahedral Sweep Mesh Generation of Open Volumes

Figure 11c. Boundary nodes are removed and each facet point is connected to the nearest in-

terior node.

Figure 11d. Interior nodes are replaced by new facet points and all quad facets are triangu-

lated to create a facetted v-GeomFace.

ALGORITHM VI: Geometry creation for curved v-TopoFaces

1. Use Algorithm IV to generate face facets even if they overlap/intersect.

2. This v-GeomFace is not used to mesh the wall-face

3. The face boundary is discretized during hex mesh generation as shown in Fig. A bilinear

3D TFI is used to create the quad mesh on the geometry-less face. Let P,Q,R,S be func-

tions representing the boundary curves in any Cartesian 3D space. Thus,

 P≡Q≡R≡S≡f(x,y,z) (1)

and the rail points are

P(x,y,z)≡r(u,0), Q(x,y,z)≡r(u,1), R(x,y,z)≡r(0,v) and S(x,y,z)≡r(1,v) (2)

where r(a,b) is a generic parametric function that represents each boundary curve in the

range of a to b. Also at any point on the boundary curves the Cartesian functions can be

written as

P(x,y,z)≡(Px, Py, Pz) (3)

The corners of the area are denoted by A,B,C,D where

A(x,y,z)≡r(0,0), B(x,y,z)≡r(1,0), C(x,y,z)≡r(1,1) and D(x,y,z)≡r(0,1) (4)

Thus, for any interior node E(x,y)≡r(u,v), Coons bilinear blending function can be written

as a boolean sum.

Ex = (1-v)Px + vQx + (1-u)Rx + uSx - [(1-u)(1-v)Ax + (1-v)uBx +v(1-u)Dx +uvCx];

Ey = (1-v)Py + vQy + (1-u)Ry + uSy - [(1-u)(1-v)Ay + (1-v)uBy +v(1-u)Dy +uvCy];

Ez = (1-v)Pz + vQz + (1-u)Rz + uSz - [(1-u)(1-v)Az + (1-v)uBz +v(1-u)Dz +uvCz]; (5)

t

t

4. This final quad mesh is now transformed to facet data. First new facet points are created

at interior node locations. All boundary node locations are swapped with facet points

closest to them.

5. At this point all nodes have corresponding facet points. Next, all boundary facet

(edge interior points only) points are connected to an interior facet location clos-

est to them to form new facets on the boundary.

6. This facet-node relationship is used to create new triangular and quadrangular

facets on the face.

7. All quad-facets are sliced into two triangles by splitting along the shortest diago-

nal. This will result in a valid all-tria facet mesh which is used to build the v-

GeomFace for this wall v-TopoFace. Figures 11(a-d) describe the steps of this

algorithm.

6. Volume Closure Strategies

The v-Topology and its underlying v-Geometry are abstract, temporary, lightweight,

mesher-native geometry representations that are necessary elements required to create a

closed void-Volume for hex meshing. These void topologies and geometries, however,

cannot be created according to a generic algorithm. The closure strategies are functions of

their class signatures.

As the first step in this process, the mesh on the source face is morphed on to the target

following our earlier algorithm [8]. In the process, a map of the source and target nodes

(N-Map) and vertices (V-Map) are created.

6.1 Closure strategy for Class I v-Volumes

In case of Class I problems, there are no wall faces. This scenario does not need a sweep

meshing technique to generate the hexahedral mesh. It’s a case of pure translation where

linear nodelines can be created between the source and target meshes using the N-Map.

These nodelines can then be discretized further according to the desired number of layers;

auto-generation of the hex mesh is trivial. However, for the sake of elegance, uniformity

and completeness, topology and geometry are still constructed for Class I problems. The

following algorithm describes the approach -

ALGORITHM VII: Volume Closure – Class I Topology

1. Use V-Map or N-Nap to build vTopoEdges

2. Construct v-TopoVolume (Vv) with the source (Fs) and target face (Ft)

 (6)

3. Check if v-TopoVolume is watertight

4. Find the free edges Ev (vTopoEdges)

5. Construct the wall v-TopoFaces

 One v-TopoFace (Fv) is created per free loop with p vTopoEdges

 (7)

Automatic Hexahedral Sweep Mesh Generation of Open Volumes

6. Add the v-TopoFaces (let’s say m) to v-TopoVolume

 (8)

Volume is now watertight. All faces are frozen with nodes and quad element faces as the

hex mesh was generated before v-Topology creation in this case. No v-Geometry and

thus facet data is necessary for the v-TopoFaces created. However, they are constructed

only if the mesher is expected to handle its newly created topological/geometry data back

to CAD to enable it to readily create a watertight solid body.

6.2 Closure strategy for Class II v-Volumes

In case of Class II problems, the v-Topology and v-Geometry are needed to build the mesh. Algo-

rithm VIII describes the steps involved.

ALGORITHM VIII: Volume Closure – Class II Topology

1. Use V-Map or N-Map to build vTopoEdges (Ev)

2. Construct v-TopoVolume (Vv) with m available TopoFaces (F)

 (9)

3. Check if v-TopoVolume is watertight

4. Find the free edges (a mix of TopoEdges and vTopoEdges)

5. Construct the wall v-TopoFaces (no v-Geometry is present initially)

6. One v-TopoFace (Fv) is created per free loop as described by eqn. (7).

7. Use Algorithm IV or Algorithm VI to generate the facets needed to create v-Geometry

8. Add all of the n v-TopoFaces to v-TopoVolume as wall faces

 (10)

The volume is now watertight.

6.3 Closure strategy for Class III v-Volumes

In case of Class III problems, wall-free vertices are not involved, so there is no need for the N/V-

Maps. Algorithm IX describes the steps involved.

ALGORITHM IX: Volume Closure – Class III Topology

1. Construct v-TopoVolume (Vv) with available m TopoFaces as in eqn. (9).

2. Check if the volume is watertight

3. Find free edges (TopoEdges)

4. Build free loops (single or multiple) to create the v-TopoFaces – one per free loop as in eqn.

(9).

5. Use Algorithm IV, Algorithm V or Algorithm VI to build v-Geometry for the v-TopoFaces

6. Add all of the n v-TopoFaces to v-TopoVolume as wall faces as described by eqn. (10).

The volume is now watertight.

6.4 Closure strategy for Class IV v-Volumes

In case of Class IV problems, wall v-TopoFaces, wall-free vertices are not involved. Neither are

the N/V-Maps as the target face is missing. Algorithm X describes the steps involved.

ALGORITHM X: Volume Closure – Class IV Topology

1. Construct v-TopoVolume (Vv) with the available TopoFaces, i.e. the source face (Fs) and the

m wall faces.

 (11)

2. Find free edges Ev (TopoEdges)

1. Build free loops (single or multiple)

2. Use all free loops to build a v-TopoFace (Ft) that represents the target face as described by

eqn. (7).

3. Build v-Geometry for the v-TopoFace using Algorithm IV

4. Add v-TopoFace to v-TopoVolume as target face

 (12)

The volume is now watertight.

6.5 Closure strategy for Class V v-Volumes

In case of Class V problems, wall-free vertices are not involved as both the target and the source

are void. Algorithm XI describes the steps involved.

ALGORITHM XI : Volume Closure – Class V Topology

1. Construct the v-TopoVolume (Vv) with m available TopoFaces (F)

 (13)

2. Check if the v-TopoVolume is watertight

3. Find p free edges Ev (TopoEdges)

4. Build free loops (must be an even number of loops)

5. Store the point-loop data in a spatial hash or a 3D Cartesian grid

6. Use the hash/grid to group the loops into two distinct subsets separated by a sweeping dis-

tance

7. Build 2 v-TopoFaces (Fs, Ft), one with each loop subset

 (14)

Automatic Hexahedral Sweep Mesh Generation of Open Volumes

 (15)

8. Use Algorithm IV to build v-GeomFace for each v-TopoFace

9. Add one v-TopoFace to v-TopoVolume as source face

10. Add other v-TopoFace to v-TopoVolume as target face

 (16)

The volume is now watertight.

7. 2D Mesh Generation on the Volume Skin

CSALF-Q, a combined recursive subdivision and loop-paving auto quad mesh generation algo-

rithm [8,9] is used to generate the mesh on the source face. The wall faces are meshed using

transfinite meshing methods [10].

8. Hexahedral Sweep Mesh Generation

Once the 2D meshes on the surface (except for the target face) are done, the hexahedral mesh is

generated by a 2½D sweep meshing approach. The source mesh is advanced through the volume

primarily by means of an affine transformation [11]. Where the affine transformation does not ex-

ist, the nodes on the cross-section are advanced according to local normal vectors and smoothed

according to various earlier reported techniques [11]. The last layer is finally projected onto the

target face and smoothed using a variational smoother [12].

9. Results & Discussion

A tool’s effectiveness and usefulness lies in its implementation in various applications. In

the case of our algorithm, majority of its applications are described in section 1. One such appli-

cation where open-volume hex-meshing can be used is simulating residual stress applied to arte-

rial walls with and without blood pressure. The arterial wall is made up of collagen, elastic fibers

and other various muscle fibers that form the unstructured wall [5]. A simplified model of an ar-

tery (Figure 12a), is used to show and simulate these stresses. A finite element model is con-

structed, where interior components of arterial walls are represented by hexahedral elements.

Creation of these elements follows the steps mentioned in the sections 3-8.

 Firstly, source and target face topologies are matched. Secondly, V-TopoEdges are creat-

ed using algorithm II as shown in Figure 12b. Next, V-Geometry is created using algorithm V.

Fourthly, the volume of this hex mesh is closed by the algorithm VII. Finally, hexahedral sweep

mesh is generated by procedures described in sections 7 and 8. The final finite element mesh gen-

erated is shown in Figure 12b.

Fig12a. V- Geometry created using Algorithm V and the volume is closed by Algorithm VII.

Fig 12b. The final arterial model with a Hexahedral swept mesh.

 Similar to the application above, the same algorithm family is used to create the hex mesh

for examples listed in Table I in section 2. The results are displayed in Table II.

The final meshes for open volumes of Class I-V are shown in Fig.13 (a-e).

Table II: Final Hexahedral Meshes on Open Volumes

CLASS

Algorithm

used to cre-

ate V-

Topology

Algorithm

used to cre-

ate V-

Geometry

Algorithm

used to cre-

ate Close

Volume

Figures

 I

 II,III IV,VI VII

Figure 13a. Hex mesh for a Class I v-

TopoVolume

Automatic Hexahedral Sweep Mesh Generation of Open Volumes

 II II,III IV,V,VI

VIII

Figure 13b. Hex mesh for a Class II

problem showing wall-free vertices

III II,III IV, VI IX

Figure 13c. Hex mesh for a Class III v-

TopoVolume

IV II,III IV, VI X

Figure 13d. Hex mesh for a Class IV v-

TopoVolume

V

II, III IV,VI XI

Figure 13e. Hex mesh for a Class V v-

TopoVolume

10. Acknowledgement

The authors would like to thank Kirk Beatty of the Meshing and Abstraction Team at Siemens for

his continued support of this research.

11. Reference

1. Steven R. Jankovich, Steven E. Benzley, Jason F. Shepherd, Scott A. Mitchell, “The Graft

Tool: An All-Hexahedral Transition Algorithm for Creating a Multi-Directional Swept Vol-

ume Mesh”, Proceedings, 8th International Meshing Roundtable, pp. 387-392 (1999).

2. L. Mingwu, S. Benzley, G. Sjaardema, T. Tautges, “A Multiple Source and Target Sweeping

Method for Generating All Hexahedral Finite Element Meshes”, Proceedings, 5
th
 Interna-

tional Meshing RoundTable, pp. 217-225 (1996).

3. Hongwei Lin, Hongwei Liao, Chongyang Deng. Filling Triangular Mesh Model with All-Hex

Mesh by Volume Subdivision Fitting. Technical Report, TR ZJUCAD 2012 002, State Key

Lab. Of CAD&CG.

4. J. Shepherd and C. Johnson, “Hexahedral mesh generation constraints”. Engineering with

Computers vol. 24, No.3, pp.195–213 (2008).

5. A. Delfino, N. Stergiopulos, J.E. Moore, J.J. Meister, “Residual strain effects on the stress

field in a thick wall finite element model of the human carotid bifurcation”, Journal of Bio-

mechanics. vol.30, pp.777–786 (1996).

6. Daniel Sunday, “Fast Polygon Area and Newell Normal Computation”, Graphics Tools, Ed.

R. Barzel, AKPeters, MA (2005).

7. K. Beatty & N. Mukherjee, “Flattening 3D Triangulations for Quality Surface Mesh Genera-

tion”, Proceedings, 17th International Meshing Roundtable, pp 125-139, (2008).

8. R. Vurputoor, N. Mukherjee, J. Cabello and M. Hancock, “A Mesh Morphing Technique for

Geometricaly Dissimilar Tessellated Surfaces”, Proceedings, 16th International Meshing

Roundtable, Springer-Verlag, pp.315-334, (2007).

9. Nilanjan Mukherjee, “CSALF-Q - A Bricolage Algorithm for Anisotropic Quad-Mesh Gen-

eration”, Proceedings, 20th International Meshing Roundtable pp. 489-510 (2011).

10. K. Beatty & N. Mukherjee, “A Transfinite Meshing Approach for Body-In-White Analyses”,

Proceedings, 19th International Meshing Roundtable, pp 49-66, (2010).

11. Patrick Knupp, “Applications of Mesh Smoothing: Copy, Morph, And Sweep On Unstruc-

tured Quadrilateral Meshes”, International Journal for Numerical Methods in Engineering,

vol. 45, pp. 37-45, (1999).

12. N. Mukherjee, “A hybrid, variational 3D smoother for orphaned shell meshes”, Proceedings.,

11
th
 Int. Meshing Roundtable, pp.379-390, (2002).

